A Berry–Esseen bound for vector-valued martingales

نویسندگان

چکیده

This note provides a conditional Berry-Esseen bound for the sum of martingale difference sequence $\{X_i\}_{i=1}^n$ in $\mathbb{R}^d$, $d\ge 1$, adapted to filtration $\{\mathcal{F}_i\}_{i=1}^n$. We approximate distribution $S=\sum_{i=1}^n X_i$ given some $\sigma$-field $\mathcal{F}_0\subset \mathcal{F}_1$ by that mean-zero normal random vector having same variance $\mathcal{F}_0 $ as $S$. Assuming variances $\mathsf{E}[X_iX_i^{\top}\mid\mathcal{F}_{i-1}]$, $i\ge are $\mathcal{F}_0$-measurable and non-singular, third moments $\|X_i\|$, i\ge 1 $, $\mathcal{F}_0$ uniformly bounded, we present simple on Kolmogorov distance between $S$ its approximation which is order $O_{a.s.}([\ln(ed)]^{5/4}n^{-1/4})$.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A large-deviation inequality for vector-valued martingales

Let X = (X0, . . . , Xn) be a discrete-time martingale taking values in any real Euclidean space such that X0 = 0 and for all n, ‖Xn − Xn−1‖ ≤ 1. We prove the large deviation bound Pr [‖Xn‖ ≥ a] < 2e1−(a−1) 2/2n. This upper bound is within a constant factor, e2, of the AzumaHoeffding Inequality for real-valued martingales. This improves an earlier result of O. Kallenberg and R. Sztencel (1992)....

متن کامل

On Vector-valued Hardy Martingales and a Generalized Jensen’s Inequality

We establish a generalized Jensen’s inequality for analytic vector-valued functions on TN using a monotonicity property of vector-valued Hardy martingales. We then discuss how this result extends to functions on a compact abelian group G, which are analytic with respect to an order on the dual group. We also give a generalization of Helson and Lowdenslager’s version of Jensen’s inequality to ce...

متن کامل

Adaptive vector-valued martingales: applications to image compression

Given a finite collection of functions defined on a common domain, the paper describes an algorithm that constructs a vector valued approximating martingale sequence. The orthonomal basis functions used to construct the martingale approximation are optimally selected, in each greedy step, from a large dictionary. The resulting approximations are characterized as generalized Hsystems and provide...

متن کامل

Vector–valued Walsh–Paley martingales and geometry of Banach spaces

Abstract The concept of Rademacher type p (1 ≤ p ≤ 2) plays an important role in the local theory of Banach spaces. In [3] Mascioni considers a weakening of this concept and shows that for a Banach space X weak Rademacher type p implies Rademacher type r for all r < p. As with Rademacher type p and weak Rademacher type p, we introduce the concept of Haar type p and weak Haar type p by replacing...

متن کامل

Lower semicontinuity for parametric set-valued vector equilibrium-like problems

A concept of weak $f$-property for a set-valued mapping is introduced‎, ‎and then under some suitable assumptions‎, ‎which do not involve any information‎ ‎about the solution set‎, ‎the lower semicontinuity of the solution mapping to‎ ‎the parametric‎ ‎set-valued vector equilibrium-like problems are derived by using a density result and scalarization method‎, ‎where the‎ ‎constraint set $K$...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Statistics & Probability Letters

سال: 2022

ISSN: ['1879-2103', '0167-7152']

DOI: https://doi.org/10.1016/j.spl.2022.109448